Package Contents
- Light Level Sensor
- 2 screws, 2 wall anchors
- Wire bracket

Tools Required
- Power drill, 3/16” bit
- Screwdriver
- Light meter

Product Description
The ceiling-mounted Light Level Sensor is wireless, powered by natural light, and uses the solar cell to measure outside illumination to control open loop dimming systems.

Every minute the light level sensor measures the current light level via the solar cell.

If the change since last transmission is > 50 lux it will immediately transmit an RF signal including the current measurement value. Otherwise there will be a heartbeat transmission after 20–30 min.

In addition the device provides a light test mode which can be used to find a suitable position for installation.

Product Features:
- Interoperable
 Communicates wirelessly with other devices using the EnOcean wireless standard
- Harvests ambient solar energy to power the sensor and wireless communication
- Measures light level via the solar cell
- Mounts easily on any ceiling material
- Enables daylight harvesting in individual fixtures or zones controlled by LEDR and LEDD or other open loop dimming systems

Specifications (typ. values)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>Solar energy harvesting</td>
</tr>
<tr>
<td>Measurement Range</td>
<td>0 – 1020 lux</td>
</tr>
<tr>
<td>Resolution</td>
<td>4 lux</td>
</tr>
<tr>
<td>Typical Accuracy</td>
<td>±5% @ full scale, 68°F</td>
</tr>
<tr>
<td>Measurement interval</td>
<td>1 minute</td>
</tr>
<tr>
<td>Transmission interval</td>
<td>After measurement if change > 50 lux since last transmission</td>
</tr>
<tr>
<td></td>
<td>Heartbeat every 20 ... 30 minutes (affected at random)</td>
</tr>
<tr>
<td>Startup charge time to first transmission*</td>
<td>5 minutes @ 200 lux for operation from empty energy store</td>
</tr>
<tr>
<td>Sustaining charge*</td>
<td>3 hours per day @ 200 lux</td>
</tr>
<tr>
<td>Time to full charge*</td>
<td>30 hours @ 200 lux</td>
</tr>
<tr>
<td>Operation time in total darkness</td>
<td>80 hours (after full charge)</td>
</tr>
<tr>
<td>Configuration Interface</td>
<td>2 Buttons, 2 LED for device configuration & manual control</td>
</tr>
<tr>
<td>RF Standard</td>
<td>EnOcean 902 MHz</td>
</tr>
<tr>
<td>Transmission Range</td>
<td>80 ft. (25 m)</td>
</tr>
<tr>
<td>EnOcean Equipment Profile</td>
<td>A5-06-02</td>
</tr>
<tr>
<td>Dimensions</td>
<td>6.30” L x 2.36” W x 1.15” D (160 mm x 60 mm x 37 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>4.4oz. (125g)</td>
</tr>
<tr>
<td>Mounting Position</td>
<td>At the ceiling, close to the ambient light source (window)</td>
</tr>
<tr>
<td>Environment</td>
<td>Indoor use only</td>
</tr>
<tr>
<td></td>
<td>32° to 140° F (0° to 60° C)</td>
</tr>
<tr>
<td></td>
<td>20% to 85% relative humidity (non-condensing)</td>
</tr>
<tr>
<td>Agency Compliance</td>
<td>FCC, IC, RoHS</td>
</tr>
</tbody>
</table>

* Natural bright light (2000 lux) can be temporarily used to significantly shorten startup charge times.

Specified lux values are for typical fluorescent lighting. Lux level requirements for LED and other types may vary.

For lux reference, OSHA standards require a minimum of 323 lux for office areas.
Light Level Sensor – Ceiling Mounted

1. Planning

Take a moment to plan for the sensor’s successful operation and optimal communication with other system components.

Remove the sensor from its packaging and place it under a bright light to provide the required startup charge.

Choose a proper installation location taking the following points into account:

- The sensor should be located at the ceiling, close to a window, or directly at the upper end of the interior window sidewall.
- The chosen location should provide natural light only; the sensor solar cell should not measure artificial light.
- The solar cell must point towards the window so that it measures the amount of incoming daylight light only.
- Use light test mode to see if the sensor properly measured daylight only. Light test mode blink rate should not change if artificial lights are switched on and off.
- In addition, during dusk or dawn use a light meter at the intended location and switch light on and off. Only small changes of the reported illumination should be seen.
- Consider the construction materials (such as metal) in the space and obstacles that may interfere with RF signals.

2. Installing

The light level sensor can be mounted on most surfaces with the provided screws, or mounted on dropped ceilings, using the provided wire bracket.

NOTE: It is often easier to link the sensor before it is mounted. Refer to the “Linking” section.

1. Decide where you want to install the light level sensor. The solar cell must point towards the window in order to measure outside illumination.
2. Remove the mounting plate from the sensor.
3. Determine which of the two installation methods is most appropriate:

 A. Screw Mounting Plate to the Mounting Surface

 i. Hold the mounting plate in place and use a pencil to lightly mark two small dots for the screw drill points.

 ii. Drill two holes with a 3/16” drill bit and insert the wall anchors.

 iii. Insert the first screw loosely and level the mounting plate.

 iv. Insert the second screw and then hand-tighten the first screw.

 B. Mount Using the Wire Bracket

 i. Remove the ceiling tile where you want to mount the sensor.

 ii. Place the mounting plate squarely on the ceiling tile and use the wire to mark two points for the holes.

 iii. Punch two small holes through the ceiling tile at the marked points.

 iv. Insert the wire bracket through the two holes in the mounting plate. Make sure the ends are roughly even.

 v. Feed the wires through the holes in the ceiling tile.

 vi. On the front of the ceiling tile, flatten the wire bracket so it is snug against the mounting plate.

 vii. On the back of the ceiling tile, twist the wires together to hold the mounting plate securely.

 viii. Replace the ceiling tile.

4. Attach the sensor to the mounting plate. With the 2-button interface facing you, slide the sensor to the left on the mounting plate until it snaps into place.

5. Confirm the sensor is properly positioned to measure outside illumination and has sufficient light to operate.

3. Linking

Linking is the process by which different devices are configured to work with each other in a system. Sometimes this process is also called Teach-in or Learn-in.

Specifically for the Light Level Sensor, linking is the process by which it identifies itself to another device that is capable of receiving processing its sensor data (e.g. an LED Controller, a Central Controller or a Gateway).
Light Level Sensor – Ceiling Mounted

Note that the Light Level Sensor cannot be linked to devices such as sensors or switches that cannot receive or process its input data.

Linking or unlinking the Light Level Sensor
To link the Light Level Sensor with a suitable device, this device must be powered, within wireless range of the Light Level Sensor and set to linking or unlinking mode to receive specific link messages.

Once these conditions are met, the Light Level Sensor is triggered to send a link radio telegram.

The other device receives this link radio telegram and identifies the sensor ID and sensor type based on the information presented therein.

The other device then stores these parameters permanently so that it can automatically accept and process future telegrams originating from the Light Level Sensor.

This relationship between the Light Level Sensor and the device it is linked to can be terminated by unlinking the Light Level Sensor from the other device.

Link / unlink procedure
1. Set the external device (e.g. controller or gateway) to Link or Unlink mode (refer to that device’s installation guide).

2. Shortly click the Link button on the side of the sensor once.
 This sends a link/unlink radio telegram.

3. The external device will receive this link/unlink radio telegram and link or unlink the Light Level Sensor accordingly.

NOTE: The button interface on the sensor is used for linking and testing only.

Refer to the “Linking” section of the transceiver / controller installation guides to complete the linking & setup process.

Light Test
Before starting light test, ensure the sensor's energy storage is fully charged by placing it under bright light (2000 lux) for 1.5 hours.

Use the light test to measure real-time light levels and confirm whether the light level sensor has sufficient natural light, is not influenced by artificial lighting and whether the light level is within its measurement range.

1. Hold up or temporary mount the sensor to the intended mounting position.

2. Press and hold the Test button for 5 seconds.
 ••> Red & green LEDs will blink to confirm light test is active.

3. Watch the LED blink rate to determine the light strength.
 0 blink: <50 lux
 1 blinks: 50-250 lux
 2 blinks: 251-500 lux
 3 blinks: 501-750 lux
 4 blinks: 751-1000 lux
 5 blinks: >1000 lux

4. This test mode will be active for 3 minutes. It can be exit at any time by pressing the Link button.

4. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution Checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor does not generate a wireless message</td>
<td>Press Test button to transmit radio message</td>
</tr>
<tr>
<td></td>
<td>Verify the solar cell is charged properly</td>
</tr>
<tr>
<td></td>
<td>Check position using light test</td>
</tr>
<tr>
<td>Linked device does not respond to wireless messages</td>
<td>Force radio message by pressing Test button</td>
</tr>
<tr>
<td></td>
<td>Check for environment or range issues</td>
</tr>
<tr>
<td></td>
<td>Verify the device is linked</td>
</tr>
<tr>
<td></td>
<td>Check the transceiver connection and the wiring for errors</td>
</tr>
<tr>
<td></td>
<td>Check if appropriate devices are linked according to good system planning</td>
</tr>
</tbody>
</table>

FCC Contains:
FCC: SZV-STM300U
IC: 5713A-STM300U

This device complies with part 15 of the FCC rules and Industry Canada ICES-003. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

IMPORTANT! Any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate this equipment.