PTM 210 / PTM 215
PTM 215U
PTM 215J

Pushbutton transmitter modules
DC Step code and later

March 2022

The product is protected by the following granted Patents:

US7710227, DE10315765B4
US9614553, EP1312171B1, CN100508406C
EP1389358B1, JP4225792B2
US7019241, EP1550202B1, DE50303733D1, CN1689218B
US7391135, EP1611663B1, DE10315764B4,
US8502470, JP5617103B2
EP2524572B1

And also by pending or not yet published Patents and Designs.
REVISION HISTORY

The following major modifications and improvements have been made from the first version of this document:

<table>
<thead>
<tr>
<th>Version</th>
<th>Author</th>
<th>Reviewer</th>
<th>Date</th>
<th>Major Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>MH</td>
<td></td>
<td></td>
<td>Update to modules with step code DC.</td>
</tr>
<tr>
<td>2.1</td>
<td>MH</td>
<td></td>
<td></td>
<td>Update of certification numbers in US and Japan.</td>
</tr>
<tr>
<td>2.2</td>
<td>MH</td>
<td></td>
<td></td>
<td>Update certificate and added product releases chapter</td>
</tr>
<tr>
<td>2.3</td>
<td>MH</td>
<td>MKa</td>
<td>23.11.2020</td>
<td>Extended mode change description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Added product safety recommendations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minor editorial corrections</td>
</tr>
<tr>
<td>2.4</td>
<td>MH</td>
<td></td>
<td></td>
<td>Added FCC certificates</td>
</tr>
<tr>
<td>2.5</td>
<td>MH</td>
<td></td>
<td></td>
<td>Minor typos correction</td>
</tr>
<tr>
<td>2.6</td>
<td>MKA</td>
<td></td>
<td>07.09.2021</td>
<td>Updated PTM 215J label</td>
</tr>
<tr>
<td>2.7</td>
<td>MK</td>
<td></td>
<td>25.03.2022</td>
<td>Added UKCA information</td>
</tr>
</tbody>
</table>

Published by EnOcean GmbH, Kolpingring 18a, 82041 Oberhaching, Germany
www.enocean.com, info@enocean.com, phone +49 (89) 6734 689 0

© EnOcean GmbH All Rights Reserved

Important!

This information describes the type of component and shall not be considered as assured characteristics. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the EnOcean website: http://www.enocean.com.

As far as patents or other rights of third parties are concerned, liability is only assumed for devices, not for the described applications, processes and circuits.

EnOcean does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. Devices or systems containing RF components must meet the essential requirements of the local legal authorities.

The devices must not be used in any relation with equipment that supports, directly or indirectly, human health or life or with applications that can result in danger for people, animals or real value.

Components of the devices are considered and should be disposed of as hazardous waste. Local government regulations are to be observed.

Packing: Please use the recycling operators known to you. By agreement we will take packing material back if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or that we are not obliged to accept, we shall have to invoice you for any costs incurred.
TABLE OF CONTENT

1 GENERAL DESCRIPTION ... 5
1.1 Product variants and ordering codes ... 5
1.1.1 Previous / other product variants ... 6
1.2 Basic Functionality ... 6
1.3 Typical Applications .. 8
1.4 Technical Data .. 10
1.5 Mechanical Interface ... 10
1.6 Environmental Conditions ... 11
1.7 References ... 11

2 FUNCTIONAL DESCRIPTION .. 12
2.1 Block Diagram ... 12
2.2 Contact Nipples Assignment .. 13
2.3 Available EnOcean Equipment Profiles 14

3 OPERATION MODES ... 15
3.1 Normal Mode Operation .. 15
3.2 Secure Mode Operation ... 15
3.2.1 Implicit RLC – legacy, not recommended 17
3.2.2 Explicit RLC – recommended 17
3.2.3 Security Teach-in .. 18
3.3 Switching between operation modes 18
3.4 Factory Reset ... 20

4 RADIO COMMUNICATION .. 21
4.1 ERP 1 Communication ... 21
4.1.1 ULP Frames .. 21
4.1.2 Common Frames ... 23
4.2 ERP 2 Communication ... 24
4.2.1 Normal Mode Telegram ... 24
4.2.2 Secure Mode Telegram ... 24
4.3 Redundant transmission .. 24

5.1 NFC Interface Overview ... 25
5.2 NFC Access Protection

25

5.3 NFC Parameters – Memory Map

26

5.3.1 Device Identification NDEF

27

5.3.2 User Information NDEF

27

5.3.3 NFC Header

27

5.3.4 Configuration

29

5.4 NFC Interaction with the PTM Application

32

5.5 NFC Interface Tools

32

5.5.1 EnOcean Tool

33

5.5.2 EnOcean NFC Configurator (PC Tool)

34

5.5.3 Including NFC Functionality into Existing Customer Tools

35

6 APPLICATIONS INFORMATION

36

6.1 Product Label

36

6.1.1 QR code structure

39

6.2 Construction of application specific Switch Rockers

40

6.3 Device Mounting

40

6.4 Transmission Range

41

7 MARKET APPROVALS

43

7.1 PTM 21x 868 MHz: Market Approval for the European Market

43

7.2 PTM 21x 868 MHz: Market Approval for the UK

43

7.3 PTM 215U: FCC and Industry Canada Regulatory Statements

44

7.3.1 FCC Grant Of Equipment Autorisation

44

7.3.2 ISED Technical Acceptance Certificate

45

7.3.3 Considerations

46

7.4 PTM 215J: Japanese Type Approval

47

8 PRODUCT SAFETY INSTRUCTIONS

48
1 GENERAL DESCRIPTION

The pushbutton transmitter family PTM 21x from EnOcean enables the implementation of wireless switches and remote controls without batteries. The PTM 21x pushbutton transmitters are self-powered (no batteries) and therefore maintenance-free. The power is provided by a built-in electro-dynamic power generator.

The main application are wireless switches in smart buildings. Products based on PTM 21x modules can also be used in hermetically sealed systems or in remote (not easily accessible) locations.

PTM 21x devices are available in variants supporting the 868 MHz, 902 MHz and 928 MHz radio interface protocols of EnOcean Alliance Radio Standard ERP 1 & ERP 2.

Step code refers to major product revisions. With the major product update to the step code DC an additional NFC interface was added to PTM 215 devices and the secure operation mode was extended to all PTM 21x devices in all frequencies.

1.1 Product variants and ordering codes

The PTM 21x product family contains the following product variants with product step code DC:

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Ordering Code</th>
<th>Product specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTM 210</td>
<td>868.300 MHz</td>
<td>S3001-A210</td>
<td>Encryption capability</td>
</tr>
<tr>
<td>PTM 215</td>
<td>868.300 MHz</td>
<td>S3001-A215</td>
<td>Encryption capability & NFC Interface</td>
</tr>
<tr>
<td>PTM 215U</td>
<td>902.875 MHz</td>
<td>S3051-A215</td>
<td>Encryption capability & NFC Interface</td>
</tr>
<tr>
<td>PTM 215J</td>
<td>928.350 MHz</td>
<td>S3061-A215</td>
<td>Encryption capability & NFC Interface</td>
</tr>
</tbody>
</table>

Table 1 Product Variants
1.1.1 Previous / other product variants

Previous revisions of the PTM 21x product family (identified by step codes DA and DB) contain only a subset of the functionality described in the document. Should you need information related to these previous revisions, then please do not use this document as reference and refer to EnOcean support (support@enocean.com) for more details.

This document describes PTM modules with the EnOcean Radio Standard. For PTM 21x modules using other radio standards (e.g. BLE, ZigBee) please visit the EnOcean Product page¹ and select the product type to find the available information.

1.2 Basic Functionality

PTM 21x devices contain an electro-dynamic energy transducer which is actuated by a bow.

![Figure 2 PTM 21x drawing with highlighted energy bow](image)

This bow is pushed by an appropriate push button, switch rocker or a similar construction mounted onto the device. An internal spring will release the energy bow as soon as it is not pushed down anymore.

When the energy bow is pushed down, electrical energy is harvested and a radio telegram is transmitted. Releasing the energy bow similarly generates energy which is used to transmit another radio telegram.

It is therefore possible to distinguish between radio telegrams sent when the energy bow was pushed (button press action) and radio telegrams sent when the energy bow was released (button release action).

By identifying these different telegrams types and measuring the time between pressing and releasing at the receiver, it is possible to distinguish between “Long” and “Short” push button presses. This enables simple implementation of applications such as dimming or blinds control.

The radio telegram used by PTM 21x devices identifies the status of the four contact nipples when the energy bow was pushed or released. This enables the implementation of up to two switch rockers or up to four pushbuttons.

All PTM 21x devices support two operating modes - a normal mode and a secure mode with rolling code encryption to enable use in secure applications.

Additionally, to the EnOcean Radio interface the PTM 215 modules include an NFC interface for device configuration. This NFC interface is powered by the NFC field of an NFC Reader or an NFC capable smartphone. This makes the communication with the PTM 215 modules possible even when the PTM is not being actuated. With a smartphone and an App e.g. EnOcean
Tool or with an NFC Reader and a PC tool e.g. EnOcean NFC Configurator it is therefore possible to read information about the PTM module and write configuration parameters.

1.3 Typical Applications

PTM 21x modules are commonly used in the following areas:

- Building installation
- Industrial automation
- Consumer electronics

Key products include wall-mounted switches and handheld remote controls supporting up to two rockers or up to four pushbuttons.

Please find below two examples of an PTM module assembled into a white housing. The left example shows a double rocker application and the right a single rocker application. This is commonly used in the European market.

A wide range of custom designs with different shapes, materials and colours can be used together with PTM modules based on their standardized mechanical interface. This allows creating customizable designs with well tested and promoted PTM 21x modules. Refer to the PTM module mounting instructions for details [1].

![Figure 5 Example of an assembled PTM Module (single and double rocker wall switch)](image)

The explosion drawing below illustrates one possible stack-up of such rocker switch with the PTM module highlighted red.
Figure 6 Explosion drawing of complete wall switch with highlighted PTM 21x Module
1.4 Technical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>Electro-dynamic power generator</td>
</tr>
<tr>
<td>Antenna</td>
<td>Integrated PCB antenna</td>
</tr>
</tbody>
</table>
| **Frequency** | PTM 210: 868.300 MHz (ASK)²
 | PTM 215: 868.300 MHz (ASK)¹
 | PTM 215U: 902.875 MHz (FSK)
 | PTM 215J: 928.350 MHz (FSK) |
| **Data rate** | 125 kbps |
| **Conducted output power** | PTM 210 / PTM 215 / PTM 215U: +5 dBm
 | PTM 215J: 0 dBm |
| **Channels** | Two channels with two pushbuttons per channel
 | Four action states per channel (upper/lower/pressed/not pressed) |
| **EnOcean Radio Standard** | ERP1 based on ISO/IEC 14543-3-10: PTM 210, PTM 215
 | ERP2 based on ISO/IEC 14543-3-11: PTM 215U, PTM 215J |
| **EnOcean Equipment Profile supported** | F6-02-xx, F6-04-xx (normal mode)
 | D2-03-00 (secure mode) |
| **Security mode** | Rolling code with AES128 |
| **Transmission range** | PTM 210 / PTM 215 / PTM 215U: typ. 300 m free field, typ. 30 m indoor
 | PTM 215J: typ. 200m free field, typ. 30m indoor |
| **Device identifier** | Individual 32 or 48 bit ID (factory programmed) |
| **Redundant sub-telegram count per radio transmission** | 3 normal mode / 2 secure mode |
| **Radio approvals** | RED 2014/53/EU (PTM 210 / 215)
 | IC/FCC CFR-47 Part 15 (PTM 215U)
 | ARIB STD-T108 (PTM 215J) |

1.5 Mechanical Interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device dimensions (inclusive rotation axis and energy bow)</td>
<td>40.0 x 40.0 x 11.2 mm</td>
</tr>
<tr>
<td>Device weight</td>
<td>20 g ± 1 g</td>
</tr>
</tbody>
</table>
| **Energy bow travel / operating force** | 1.8 mm / typ. 9 N
 | At room temperature |
| **Restoring force at energy bow** | typ. 0.7 N to 4 N
 | Minimum restoring force of 0.5 N is required for correct operation |
| **Number of operations at 25°C** | typ. 100,000 actuations tested according to EN 60669 / VDE 0632 |
| **Cover material** | Hostaform (POM) |
| **Energy bow material** | PBT (50% GV) |

² According the international standard for energy harvesting wireless radio protocol for self-powered applications: ISO/IEC 14543-3-10
1.6 Environmental Conditions

<table>
<thead>
<tr>
<th>Operating temperature</th>
<th>-25 °C up to +65 °C³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature</td>
<td>-25 °C up to +65 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>0% to 95% r.h.</td>
</tr>
</tbody>
</table>

⚠️ Typical temperature difference between the PTM module (TX) and a receiver (RX) should not be bigger than 60 °C.

1.7 References

[1] Mounting Instructions PTM

[2] 2D and 3D model for PTM Rockers

https://www.enocean-alliance.org/specifications/

³ Operation below – 10°C might result in reduction of redundant sub telegram counts by 1.
2 FUNCTIONAL DESCRIPTION

2.1 Block Diagram

PTM 21x devices contain the following functional building blocks:

Energy Generator / Energy Bow
Converts the motion of the energy bow into electrical energy. This is the main energy source for the operation of PTM Modules.

Energy Converter
Converts the energy of the energy generator into a stable DC supply voltage for the device electronics.

Energy Management
Secures energy supply of the module for the required period. The generator provides an burst of energy which needs to be stored and managed to enable the required device functionality.

Microcontroller
Determines the status of the contact nipples and the energy bow, encodes this status into an EnOcean radio telegram, if required it encrypts this data and computes the authentication signature, generates the proper radio telegram structure and sends it to the radio transmitter.

RF Transmitter
Transmits the data as a series of short EnOcean radio telegrams.
Contact Nipples

Via the 4 contact nipples the rockers or other custom plastics can code specific information into the radio telegram triggering different functions at the receiver.

NFC Interface

The NFC interface represents the second communication interface of the PTM and it is designed for commissioning of the PTM. Using the NFC module information, modes and runtime parameters can be read and in selected parameters also written.

2.2 Contact Nipples Assignment

PTM 21x devices provide four contact nipples. They are grouped into two channels (Channel A and Channel B) each containing two contact nipples (State O and State I). The nipples are therefore referred to as: AO, AI, BO and BI.

The state of all four contact nipples is transmitted together with a unique device identification whenever the energy bow is pressed or released as a part of an EnOcean radio telegram.

The encoding of the nipple status is defined in the EEP Profile which is selected based on the Radio Standard (ERP1 or ERP2) and the operating mode (normal or secure). See chapter 2.3 for details on used EEPs.

The picture below shows the arrangement of the four nipples and their designation:

![Figure 8 Contact nipple designation](image)
2.3 Available EnOcean Equipment Profiles

The EnOcean Equipment Profile (EEP) defines how the data within EnOcean telegram is encoded. For PTM 21x modules it determines how the nipple and energy bow state are represented in the radio telegram. Based on the EEP the receiver knows how to interpret telegrams received from a PTM module.

In contrast to sensors which usually support one profile at a time, the encoding of PTM module does not vary between profiles (RPS profiles) and it up to the receiver to decide how the data should be interpreted. The receiver can decide what action (switch on / off the light, dim up / down, move shutters, ...) to take. This makes PTM modules very flexible to use.

The table below summarizes the EEP supported by the different members of the PTM 21x product family.

<table>
<thead>
<tr>
<th></th>
<th>Normal Mode</th>
<th>Secure Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP 1</td>
<td>F6-01-01</td>
<td>D2-03-00</td>
</tr>
<tr>
<td>(PTM 210, PTM 215)</td>
<td>F6-02-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F6-02-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F6-02-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F6-04-01</td>
<td></td>
</tr>
<tr>
<td>ERP 2</td>
<td>F6-02-04</td>
<td>D2-03-00</td>
</tr>
<tr>
<td>(PTM 215J, PTM 215U)</td>
<td>F6-04-02</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Possible EEPs

For the normal mode profiles (Starting with F6) there is no EEP Teach-in message sent. For secure mode profile (starting D2) there is Secure Teach In. See chapter 3.2.3 for details.

⚠️ TCM 515U and TCM 310U convert ERP2 profiles to EPR1 profiles internally. On the ESP3 interface the messages look like “ERP1”.

⚠️ Due to the mechanical hysteresis of the energy bow, in most rocker switch device implementations, pressing the rocker sends an N-message and releasing the rocker sends a U-message.

⚠️ Note that PTM 21x in will not send a data telegram when pressing 2, 3 or 4 nipple SBC and actuating the energy bow. This button combination is reserved for mode change. Please see chapter 3.3 for details.
3 OPERATION MODES

This chapter describes the standard “out of the box” behaviour of PTM 21x devices. This standard behaviour e.g. mode selection or secure teach-in telegram transmission can be altered by the NFC Interface. Please refer to the chapter 5.4 for details.

PTM 21x devices support two operation modes:

- Normal mode
- Secure mode, this mode has two additional sub options
 - Implicit RLC (legacy, not recommended)
 - Explicit RLC (recommended)

In production the PTM 21x is set into “normal mode” operation. This is therefore the “out of the box” behaviour of PTM 21x devices.

3.1 Normal Mode Operation

In normal mode, PTM 21x transmits telegrams in the EEP profile respectively defined by ERP1 or ERP2. Please refer to Chapter 2.3 for details.

In Normal mode, transmission of PTM 21x modules is secured by the secure concept includes unique transmitter IDs. This means EnOcean products cannot be configured to transmit with identical transmitter ID except for the special case of Base IDs.

3.2 Secure Mode Operation

While operating in secure mode, the PTM 21x sends secure telegrams in accordance to EEP D2-03-00. Please refer to Chapter 2.3 for details.

In secure mode, the PTM modules use advanced security protection with data encryption and message authentication. These mechanisms offer effective protection against a series of different attacks. One of the most concerning are Eavesdropping and Replay attacks.

Eavesdropping means somebody can receive and interpret the data correctly. Replay attacks means an intruder receives and records the message to be retransmitted (replayed) later in order to trigger an action.

An illustration of these attack scenarios is shown in the figure below.
For details on the secure mechanisms please refer to the security specification of the EnOcean Radio Protocol [3] together with the examples given in the application note4.

Secure telegrams include a rolling code based on an incrementing counter (RLC) which guarantees that identical message content will be encrypted differently.

The counter value (RLC) can either be:

- Included in each data message - Explicit RLC (recommended)

Or

- Not included in data messages – Implicit RLC (legacy, not recommended)

The counter value is also part of the teach-in telegram. The selection if the counter is implicit or explicit is done via the NFC interface (see chapter 5.3.4.3) or special button combinations at mode switching (see chapter 3.3).

There is no advantage in term of being “more secure” or “more protected” by using the implicit RLC mode over explicit RLC mode or vice versa. The “protection level” and security mechanisms are identical.

The RLC counter bit-size (24 bit in explicit mode which is equal to over 16 million telegrams) practically ensures no “run over” will ever occur and that no RLC value will be reused during the PTMs lifetime twice.

The RLC counter is initialized to 0 at production and will increment by one for each telegram sent after that. The RLC counter is will be set to 0 automatically if the security key is changed via the NFC interface.

After executing a factory reset (see chapter 3.4 for details), the PTM module returns to using the factory-set security key but does not reset the RLC counter associated with the key. The most recently used RLC value associated with the factory-set security key will be used.

3.2.1 Implicit RLC – legacy, not recommended

Implicit RLC mode is relevant only for the European product variant (PTM 210, PTM 215 operating at 868 MHz) because of existing legacy receivers. For the J and U product variants (PTM 215J and PTM 215U operating 928 MHz and 902 MHz respectively), there are no such legacy receivers and thus this mode is completely deprecated in these markets.

In this mode, the initial RLC counter value is transmitted from PTM 21x to the receiver only as part of the teach-in telegram. Subsequent secure telegrams do not include it. Therefore, receiver has to automatically increment its counter at every received telegram to keep it synchronized with the PTM Module.

When telegrams are not received by the receiver then this may lead to a de-synchronization of the RLC counter in the PTM module and the RLC counter in the receiver, i.e. the PTM module counter will have a greater value than the receiver counter.

In order to mitigate this issue, the receiver will usually test the received rolling code against a defined number – a window - of future expected rolling codes. If a RLC from within the window can be validated, then the receiver will resynchronize its counter automatically to the new value.

The size of this rolling code window is defined on the receiver side.

For the correct function it is essential that the number of consecutive, non-received telegrams does not exceed the size of this window.

3.2.2 Explicit RLC – recommended

This is the recommended secure mode for all frequencies and new applications.

In this mode, the PTM module sends the RLC value as part of every data telegram. With transmission of the RLC in every data telegram a desynchronization of the RLC counters between receivers and transmitter like described above cannot happen.

The receiver uses the RLC value inside the radio telegram to decrypt and authenticate the received message. The receiver has to check if the received RLC is higher than the last known value and he does not have to apply any RLC window search mechanism.
3.2.3 Security Teach-in

The Security teach-in includes required information for the receiver to decrypt future data communication. Transmission of a security teach-in telegram by PTM 21x can be triggered as follows:

- Executing the special button combination for secure mode 2x nipple SBC or 3x nipple SBC – see chapter 3.3 for details.
- Trigger through the NFC interface (PTM 215 modules only).

The Secure Teach-in telegram contains the following parameters:

- **Type of the Teach-in_info in the secure teach-in telegram**

 Teach_In_Info : Type IS: 1-PTM.

- **Info of the Teach-in_info in the secure teach-in telegram**

 Teach_In_Info : Info IS: 0-Rocker A / 1-Rocker B.

 If a button combination (2xSBC or 3xSBC) is used to trigger transmission of the security teach-in telegram then the channel in which both nipples are pressed (A0&AI or B0&B1) defines the rocker value that is used (Rocker A or Rocker B).

 When then Secure Teach-in is triggered by NFC then the rocker is used which was used to generate energy and transmit the Secure Teach-in telegram. If both or no rocker was used, then Rocker A is used.

- **SLF (Security Level Format)** is set according to the selected security mode

 - For implicit RLC (legacy, not recommended)

 SLF specifies 24 bit MAC, VAES Encryption, 16 bit RLC, RLC is not transmitted

 - For explicit RLC (recommended)

 SLF specifies 24 bit MAC, VAES Encryption, 24 bit RLC, RLC is transmitted

Due to the total length of the Security Teach-In message it needs to be separated in two distinct telegrams. The first part is transmitted when the energy bow is pressed and the second part will be transmitted when the energy bow is released. Both parts need to be transmitted and received in order to complete the security teach-in procedure.

For more information on the structure of the security teach-in telegram please refer to the EnOcean Security specification [3].

If the teach-in process is not successful, please repeat the procedure. Due to the enhanced telegram length of teach-in telegrams in secure mode, only a single teach-in sub-telegram is sent at every actuation (no redundancy).

3.3 Switching between operation modes

PTM 21x can be switched between normal mode operation and secure mode operation by a special button combination (SBC). There are three types of SBC:
2 nipple SBC – pressing both nipples of a channel i.e. AI & AO or BI & BO. This SBC is used to enter the secure mode with implicit RLC – legacy, not recommended. The figure below shows both variants of the 2 nipple SBC.

Figure 10 The 2 nipple SBC - either using channel A left or channel B right

3 nipple SBC – pressing any 3 nipples, which results in 4 different combinations. This SBC is used to enter the secure mode with explicit RLC. The figure below shows the four possible options of the 3 nipple SBC.

Figure 11 The 3 nipple SBC - 4 different options

4 nipple SBC – pressing all 4 nipples. This SBC is used to enter the normal mode and execute factory reset. The figure below shows the 4 nipple SBC.

Figure 12 The 4 nipple SBC

To execute a mode change using any of these SBC, the energy bow must be activated in a defined sequence simultaneously. The SBC must be held for the complete sequence. The table below lists the response of the PTM module to the different SBC depending on the executed sequence.
3.4 Factory Reset

The PTM module can execute a factory reset to return to the defined factory defaults. All changes done via SBC or the NFC interface except the Custom NFC message (as described in chapter 5.3.2.) will be reset.

The factory reset is triggered by using the 4 nipple SBC and simultaneously executing the sequence of 7x times pressing & releasing the energy bow.

<table>
<thead>
<tr>
<th></th>
<th>2 SBC</th>
<th>3 SBC</th>
<th>4 SBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy bow 1# press</td>
<td>N/A</td>
<td>N/A</td>
<td>Switch to Normal Mode</td>
</tr>
<tr>
<td>Energy bow 1# press/release</td>
<td>Transmit secure teach in – if current mode is security with implicit RLC.</td>
<td>Transmit secure teach in – if current mode is security with explicit RLC.</td>
<td>N/A</td>
</tr>
<tr>
<td>Energy bow 1# press/release 2# press</td>
<td>Switch to Security mode with implicit RLC & transmit secure teach-in (first part).</td>
<td>Switch to Security mode with explicit RLC & transmit secure teach-in (first part).</td>
<td>N/A</td>
</tr>
<tr>
<td>Energy bow 1# press/release 2# press</td>
<td>Transmit secure teach-in (second part).</td>
<td>Transmit secure teach-in (second part).</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3 Transition table

The secure teach-in second part transmission is automatically executed by the PTM module at the release action regardless what nipples are pressed or not pressed.

Before changing the operating mode, please make sure to clear the device from all receivers which have been teach-in with this device before. Otherwise the receiver will ignore the telegrams and the application will not work.
4 RADIO COMMUNICATION

The PTM module transmits radio telegrams based on the EnOcean Alliance Radio standard. The Radio standard uses the ISO/IEC standard on the lowest protocol level.

There are two version of the EnOcean Radio Protocol:

1. “EnOcean Radio Protocol 1”
 ERP 1 based on ISO/IEC 14543-3-10 mostly present in Europe & China

2. “EnOcean Radio Protocol 2”
 ERP 2 based on ISO/IEC 14543-3-11 mostly present in US & Japan

The used radio standard defines the radio telegram structure. In the ERP1 there is also a difference between ultra-low power (ULP) frames and common frames.

4.1 ERP 1 Communication

The ERP1 uses different radio telegram structures depending on the operation mode of the PTM module. These structures are:

- Normal mode uses “normal mode ULP”
- Secure mode with implicit RLC – legacy, not recommended uses “Secure mode ULP”
- Secure mode with explicit RLC – recommended uses “Encrypted RPS Telegram”

The above-mentioned telegram frames are described in the chapters below.

4.1.1 ULP Frames

To save energy the ULP Frames have effectively less payload than the common telegrams. The ULP Telegrams are also described in the EnOcean Alliance Air Interface Certification [3].

4.1.1.1 Normal mode ULP

The normal mode ULP has total length of 6 bytes. The common frame (RPS), which the ULP is extend to, is 8 bytes long.

Please consider that EnOcean based receivers & repeaters will transform the ULP telegrams to common frames by default.
The ULP has a value of 0x5 or 0x6 defined by the switch action. It is described in the EEP, see chapter 2.3 for details on the EEP. It is then substituted to 0xF6 (RPS).

DATA
- Is defined as payload of the EEP, see chapter 2.3 for details on EEP. No change during extension.

TXID
- Represents the EnOcean Unique ID. No change during extension.

STATUS
- Is created according to the EEP and EPR 1 specification.

HASH
- A 4-bit CHECKSUM in extended to an 8 bit CRC or CHECKSUM. For details please see the ERP 1 specification [4].

4.1.1.2 Secure mode ULP

The secure mode ULP follows the same concept, i.e. the payload is reduced to save energy.
RORG
- The secure low power switch RORG field code 0x7F is substituted by the secure telegram RORG (0x30) defined in the EnOcean Security Specification [3].

DATA
- Is defined as payload of the EEP, see chapter 2.3 for details on EEP. No change in field when extended.

MAC

TXID
- Represents the EnOcean Unique ID. On substitution the field is extended by 1 byte in the MSB position with 0xFE.

STATUS
- Is created according the EEP and EPR 1 specification.

HASH
- A 4-bit CHECKSUM in extended to an 8 bit CRC or CHECKSUM. For details please see the ERP 1 specification [4].

4.1.2 Common Frames

4.1.2.1 Encrypted RPS Telegram

The secure mode ULP supports only a selected type of Security Level Format - SLF. It does not support SLF with transmission of RLC – “explicit RLC”. To use SLFs with explicit RLC the definition had to be extended. Instead of redefining the secure mode ULP, the common RPS with encryption was used. This combination did not require any additional specification work. For details on encrypted RPS telegrams please see the EnOcean Security specification [3].
4.2 ERP 2 Communication

The ERP2 frames are fully described by the ERP2 specification. In the ERP2, there are no ULP frames defined and the PTM module uses the common definition. The ERP2 frame is defined as follows:

<table>
<thead>
<tr>
<th>Length</th>
<th>Header</th>
<th>Ext.-Header</th>
<th>Ext.-Telegramtype</th>
<th>Originator-ID</th>
<th>Destination-ID</th>
<th>Data of Data Link Layer (Data_DL)</th>
<th>Optional Data</th>
<th>CRC</th>
</tr>
</thead>
</table>

The relevant fields are defined below, for other fields and details please consult the ERP2 specification. Optional Data is not used in any type of the PTM module telegram.

4.2.1 Normal Mode Telegram

HEADER

- ADDRESS CONTROL: 0b001: Originator-ID 32 bit; no Destination-ID
- EXT. HEADER: 0b0: No extended header
- TELERGAM TYPE: 0b0000: RPS telegram (0xF6)

DATA OF DATALINK LAYER

- Is defined as payload of the EEP, see chapter 2.3 for details on EEP.

4.2.2 Secure Mode Telegram

HEADER

- ADDRESS CONTROL: 0b001: Originator-ID 32 bit; no Destination-ID
- EXT. HEADER: 0b0: No extended header
- TELERGAM TYPE: 0111: Secure telegram (0x30)

DATA OF DATA LINK LAYER

- Is defined as payload of the EEP, see chapter 2.3 for details on EEP.

4.3 Redundant transmission

Both EnOcean Radio standards (ERP 1 and ERP 2) include a mechanism for redundant telegram transmission to increase the communication reliability.

This means each data transmission is repeated several times (as a series of redundant sub-telegrams with random timing offsets) to increase probability of unimpaired reception. The redundant sub-telegrams are 100% identical. Therefore, it is enough to receive at least one sub-telegram.

The number of redundant sub-telegrams is defined by the selected mode as follows:

- Normal mode data telegram: Transmitted using 3 redundant sub-telegrams
- Secure mode data telegrams: Transmitted using 2 redundant sub-telegrams
5 CONFIGURATION VIA NFC – PTM 215 / PTM 215J / PTM 215U

5.1 NFC Interface Overview

PTM 215 implements an NFC configuration interface that can be used to access (read and write) the PTM 215 configuration memory and thereby configure the device as described in the following chapters.

NFC communication distance is for security reasons set to require direct contact between the NFC reader and the PTM 215 device.

The NFC interface of PTM 215 implements NFC Forum Type 2 Tag functionality as specified in the ISO/IEC 14443 Part 2 and 3 standards using an NXP NT3H2111 Mifare Ultralight tag.

For specific implementation aspects related to the NXP implementation in NT3H2111, please refer to the NXP documentation which at the time of writing was available under this link:

For a detailed description about the NFC functionality, please refer to the ISO/IEC 14443 standard.

5.2 NFC Access Protection

Protected data access is only possible after unlocking the configuration memory with the correct 32-bit PIN code. By default, the protected area is locked and the default pin code for unlocking access is 0x000E215.

The default pin code shall be changed to a user-defined value as part of the installation process. This can be done by unlocking the NFC interface with the old PIN code and then writing the new PIN code. For details please refer to chapter 0.
5.3 NFC Parameters – Memory Map

The NFC memory is organized in pages (a page is the smallest addressable unit) where each page contains 4 byte of data. Several pages with similar functionality form an NFC memory area.

These NFC pages are allocated into the following areas:

1. NDEF based (UTF-8)
 - Device Identification NDEF string (Public read-only access; no PIN required)
 This area contains an NDEF string identifying key device parameters
 - User Information NDEF string (Public read / write access; no PIN required)
 This area allows any user to read or write information about the device such as the intended installation location or additional instructions.

2. Binary data area
 - NFC HEADER (Public read-only access; no PIN required)
 This area contains information about the NFC revision.
 - CONFIGURATION (Read and Write access, PIN required)
 This area contains device configuration registers
 - INTERNAL DATA (Non-accessible)
 This area contains calibration values and internal parameters and cannot be used

The structure of the PTM 215 NFC memory map is shown in the table below.

<table>
<thead>
<tr>
<th>NFC Address</th>
<th>PIN Required</th>
<th>Operations</th>
<th>Memory Area</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01 - 0x1F</td>
<td>NO</td>
<td>Read only</td>
<td>PRODUCT NDEF</td>
<td>Device identification NDEF string</td>
</tr>
<tr>
<td>0x20 - 0x2F</td>
<td>NO</td>
<td>Read / Write</td>
<td>USER NDEF</td>
<td>User information NDEF string</td>
</tr>
<tr>
<td>Dynamic</td>
<td>NO</td>
<td>Read only</td>
<td>NFC HEADER</td>
<td>NFC memory revision</td>
</tr>
<tr>
<td>0x40 - 0x4A</td>
<td>YES</td>
<td>Read / Write</td>
<td>CONFIGURATION</td>
<td>Configuration registers</td>
</tr>
<tr>
<td>0x4B – 0x9F</td>
<td>N/A</td>
<td>N/A</td>
<td>INTERNAL DATA</td>
<td>Internal data (Do not use)</td>
</tr>
</tbody>
</table>

Table 4 PTM 215 NFC memory areas
5.3.1 Device Identification NDEF

The NDEF area contains a device identification string using the NDEF (NFC Data Exchange Format) standard that is readable by most NFC-capable reader devices (including smartphones).

The NDEF content can be read also by conventional NTAG commands, but this is then executed in “binary” mode. The conversion to a string is achieved by applying UTF-8 decoding.

The contents of the NDEF container are defined by the EnOcean Alliance Labelling specification. For more details please see [3].

An example device identification string from the NDEF area of a PTM 215 module could be:

```
6PENO+30S000012345678+1P00000000053+30PS3001-A215+2PDC22+Z01234567891234
+3C31+16S01000000
```

This NDEF string encodes the parameters shown in Table 5 below.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Length of data (excl. identifier)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6P</td>
<td>3 characters</td>
<td>Standard: “ENO”</td>
</tr>
<tr>
<td>30S</td>
<td>12 characters</td>
<td>EURID (6 byte, variable)</td>
</tr>
</tbody>
</table>
| 1P | 12 characters | EnOcean Alliance Product ID
| | | PTM 215: “000B00000053” |
| | | PTM 215U: “000B00000055” |
| | | PTM 215J: “000B00000057” |
| 30P | 10 characters | Ordering Code
| | | PTM 215: “S3001-A215” |
| | | PTM 215U: “S3051-A215” |
| | | PTM 215J: “S3061-A215” |
| 2P | 4 characters | Step Code and Revision (“DC22”) |
| 2Z | 14 characters | NFC UID (14 byte, globally unique) |
| 3C | 2 characters | Header Start Address (“31” = 0x31) |
| 16S | 8 characters | SW Version
| | | Example: 01000000 = 01.00.00.00 |

Table 5 NDEF Parameters

5.3.2 User Information NDEF

The NDEF area allows the user to store a string of up to 64 characters starting at page 0x20 and ending at page 0x2F. The string is formatted in the UTF-8 encoding.

5.3.3 NFC Header

The NFC HEADER area contains information about the NFC memory structure and can therefore be used to distinguish between different NFC memory layouts. The start of the memory is defined by the Header Start Address from the device identification NDEF, see 5.3.1 for details.
The structure of the NFC HEADER area is described in detail in the EnOcean Alliance specification - NFC Memory Structure for Eco-system products, for details see reference [3]. Details are also shown in the table below.

<table>
<thead>
<tr>
<th>NFC Address</th>
<th>Content</th>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x31</td>
<td>START (0xE0)</td>
<td>LENGTH</td>
<td>VERSION (0x01)</td>
<td>MAN ID MSB (0x00)</td>
<td></td>
</tr>
<tr>
<td>0x32</td>
<td>MAN ID LSB (0x0B)</td>
<td>NFC Struct ID (0x000001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x33</td>
<td>REVISION (0x02)</td>
<td>END (0xFE)</td>
<td>UNUSED (0x0000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 15 NFC HEADER area structure

The NFC HEADER contains the following fields:

START
- This field identifies the start of the NFC header and is always set to 0xE0.

LENGTH
- This field identifies the length of the NFC header.
- This field is set to 0x0A since the header structure is 10 bytes long.

VERSION
- This field identifies the major revision of the NFC specification.

MAN ID
- The 16-bit Manufacturer ID is assigned by the EnOcean Alliance. The field identifies the manufacturer of the device so that manufacturer-specific layout implementations can be determined.
- For EnOcean GmbH products this field is set to 0x000B.

NFC Struct ID
- The 24-bit NFC Struct ID field identifies an individual device from the range of devices manufactured by the manufacturer specified in the Manufacturer ID field.
- For PTM 215, the NFC Struct ID is set to 0x000001.

REVISION
- The REVISION field identifies the exact revision of the NFC layout.
- The REVISION will be incremented whenever a change to the NFC layout is made. Changes are possible only when 100% backwards compatible to all previous revisions. If changes are not compatible a new NFC Struct ID must be defined.
END

- The END field identifies the end of the NFC header and is always set to 0xFE. The number of bytes from START to END must equal LENGTH, otherwise the NFC header is invalid.

5.3.4 Configuration

The CONFIGURATION area allows the configuration of the device parameters. Configuration registers larger than 8 bit use big endian format, i.e. the most significant byte comes first.

Read or write access to the CONFIGURATION area is only possible after unlocking the memory using the correct 32-bit PIN code. See chapter 5.2 for details.

Before making any changes to the default configuration, be sure to familiarize yourself with the functionality of the device and the effect of the intended changes.

The structure of the CONFIGURATION area is defined by the NFC Struct ID as described in chapter 5.3.3 and is shown in Figure 16 below.

<table>
<thead>
<tr>
<th>NFC Address</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x40</td>
<td>Byte 0</td>
</tr>
<tr>
<td>0x41</td>
<td>Byte 1</td>
</tr>
<tr>
<td>0x42</td>
<td>Byte 2</td>
</tr>
<tr>
<td>0x43</td>
<td>Byte 3</td>
</tr>
<tr>
<td>0x44</td>
<td>NEW NFC PIN</td>
</tr>
<tr>
<td>0x44 ...</td>
<td>SECURITY LEVEL</td>
</tr>
<tr>
<td>0x47</td>
<td>ALLOW TEACH IN</td>
</tr>
<tr>
<td>0x44</td>
<td>NEXT OPERATION IS TEACH IN</td>
</tr>
<tr>
<td>0x48</td>
<td>RFU</td>
</tr>
<tr>
<td>0x49</td>
<td>USER KEY (128 Bit)</td>
</tr>
<tr>
<td>0x4A</td>
<td>(Write Only - Will be reset to zero after it has been copied to internal memory) Can be used as alternative security key instead of FACTORY_KEY</td>
</tr>
<tr>
<td>0x49</td>
<td>PRODUCT ID</td>
</tr>
<tr>
<td>0x4A</td>
<td>(String with 12 characters “e.g. 000B000000053” in UTF-8 format – to be copied to NDEF)</td>
</tr>
</tbody>
</table>

Figure 16 CONFIGURATION area structure

Each field is explained in the following chapters.

5.3.4.1 FLAG

This field needs to be changed to 0x55 to make the PTM application aware of the executed changes. Without setting this field to 0x55 the changes will not be considered by the PTM application.
5.3.4.2 NEW NFC PIN

The NFC PIN used to protect access to the CONFIGURATION memory area should be changed from the default value to a user-specific value to avoid unauthorized access to the NFC device configuration interface.

To do so, first authenticate with the current NFC PIN and then write the new NFC PIN (32-bit value) to memory.

The new NFC PIN will be applied to the PTM module after pressing & releasing the energy bow. Until then, the previous NFC PIN will remain valid to unlock the NFC memory.

5.3.4.3 SECURITY LEVEL

The security level register defines what encryption features are used in the radio transmission. If this register is changed from its default setting via the NFC interface, manual mode changes via SBC (as described in chapter 3.3) are no longer possible.

Both the 2 nipple SBC and 3 nipple SBC will still trigger the transmission of a Security Teach-in if a security mode was selected by NFC. In this case the Security Teach-in is transmitted already at the first energy bow press / release.

To re-enable the "mode change by SBC", a factory reset needs to be executed. The mode change via NFC remains possible even after a write operation.

The operation and application behaviour of the selected mode is described in chapter 3. The following options can be selected:

- 0b00000000: Normal mode operation
- 0b00000001: Secure mode – Implicit RLC legacy
- 0b00000010: Secure mode – Explicit RLC (recommended)
- 0b00000011: Defined by SBC (default). This value cannot be set by NFC write operation.

0b0000 0100 – 0b1111 1111: RFU

5.3.4.4 ALLOW TEACH IN

This flag controls if a Security Teach-in can be triggered by SBC. The Security Teach-in Telegram is described in chapter 3.2.3. The following values can be set:

- 0b00000000: OFF: SBC will not trigger a secure teach-in telegram or any other (data) telegram.
- 0b00000001: ON (default): SBC will trigger a secure teach-in telegram.

0b0000 0010 – 0b1111 1111: RFU
5.3.4.5 **NEXT OPERATION IS TEACH IN**

The module will send a Security Teach-in telegram the next time it is triggered. The module must first be set to the desired security level. After the secure Teach in telegram was send this flag is reset to default state. Following values can be set

- 0b00000000: OFF (default): Normal operation.
- 0b00000001: ON: Next telegram will be a Security Teach-in telegram.

0b0000 0010 – 0b1111 1111: RFU

5.3.4.6 **PRODUCT ID**

The EnOcean Alliance Product ID uniquely identifies each product within the EnOcean Alliance ecosystem. The Product ID consists of a 2-byte manufacturer identification code (assigned by EnOcean Alliance) and a 4-byte product identification code (assigned by the manufacturer).

EnOcean has been assigned the manufacturer identification code 0x000B. EnOcean has assigned the following product identification codes to PTM 215:

- PTM 215: 0x00000053
- PTM 215U: 0x00000055
- PTM 215J: 0x00000057

The PRODUCT ID register contains the Product ID in ASCII format (12 characters) and allows changing both manufacturer and product identification. Changing the PRODUCT ID will also cause the PRODUCT ID field in the NDEF string (described in chapter 5.3.1) to be updated.

Figure 17 below shows the structure of the PRODUCT ID register. This register contains the sequence of 12 ASCII characters (1 byte each) starting with CH0 and ending with CH11.

<table>
<thead>
<tr>
<th>PRODUCT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH0</td>
</tr>
<tr>
<td>Manufacturer (“000B”)</td>
</tr>
</tbody>
</table>

5.3.4.7 **USER_KEY**

Each PTM 215 module is pre-programmed at the factory with a randomly generated 128-bit security key (factory-set security key). This key will by default be used to encrypt and authenticate PTM 215 radio telegrams when operating in security mode. This key is also encoded inside the QR code on the label of the product.

In certain applications or situations, it might be desirable to assign a different (user-defined) security key. This can be done by writing the user-defined security key to the USER_KEY. Once the key was written the PTM 215 will automatically use the new written key and reset the RLC sequence to 0x0.
To return to the factory defined key a factory reset as described in chapter 3.4 must be executed.

⚠️ Note that the USER_KEY register is a write-only register meaning that it is not possible to read back a user-defined security key.

5.4 NFC Interaction with the PTM Application

The PTM 215 application software is not powered by the NFC interface during NFC communication. After parameters in the NFC memory were changed, the energy bow has to be pressed and released so that the PTM 215 application software can read the new parameters, verify and apply them.

For this purpose, a special FLAG register has to be set to notify the PTM 215 Application about configuration changes. Description of the FLAG register can be found in chapter 5.3.4.

During the first press / release cycle immediately after an NFC configuration operation, the PTM module will update its internal parameters according to the provided configuration values and therefore not execute any radio communication. Afterwards e.g. during the second press / release cycle, normal operation will resume.

Configuring the following parameters will change the standard PTM module behaviour as explained in the chapter 3:

- **SECURITY LEVEL**, (see chapter 5.3.4.3)
 - Effect: Switching modes by SBC is not possible.

- **ALLOW TEACH IN**, (see chapter 5.3.4.5)
 - Effect: When entering Security Mode by SBC, a teach-in telegram is not transmitted anymore.

5.5 NFC Interface Tools

To use the NFC interface of the PTM Modules there are different options:

- “EnOcean Tool“ is a smartphone app available for iOS and Android
- “EnOcean NFC Configurator“ is a PC application that can be used in conjunction with a specific NFC USB Reader
- Customer-developed tools according to the specifications given in this document
5.5.1 EnOcean Tool

![EnOcean Tool Icon](image)

Figure 18 EnOcean Tool Icon

EnOcean Tool is a smartphone application for easy configuration and commissioning of EnOcean NFC devices such as the PTM 215 module, the STM 550 multisensor or the EMDC motion detector. This application serves as a configuration interface between NFC devices and NFC readers such as NFC-enabled smartphones or tablets. It can be used to determine all essential product parameters.

The app is mainly aimed at OEMs and installers. They can also use the application to integrate NFC devices into existing systems. EnOcean Tool can be used to optimize the energy consumption of the respective device, monitor the energy-harvesting performance of the integrated solar cell (in sensors) and read out all product information such as product ID or device recognition. Access to the NFC interface is protected by a user-defined PIN code.

The EnOcean Tool app is available free of charge for the operating systems iOS and Android. For app downloads, tutorial videos and more details please visit the EnOcean Tool Product page: https://www.enocean.com/products/enocean-software/enocean-tool/

Direct download is possible via these QR codes:

iOS

![iOS QR Code](image)

Android

![Android QR Code](image)

⚠️ With EnOcean Tool you can configure only selected parameters of the products. Please check the Help Section of Product Manuals in EnOcean Tool for details.
5.5.2 EnOcean NFC Configurator (PC Tool)

EnOcean provides the EnOcean NFC Configurator for all OEM Partners to configure and commission EnOcean GmbH products with NFC interface. NFC Configurator is a PC application enabling to write / read all accessible parameters specified for the product. Configured parameters can also be stored into a separate file, reopened and shared with other users. It also includes a simple option to execute batch programming in small numbers and log the process.

The EnOcean NFC Configurator is designed to work on PC running Windows 10 in conjunction with the external USB NFC reader TWN4 Multitech 2 HF NFC Reader (order code T4BT-FB2BEL2-SIMPL) from Elatec RFID Systems (sales-rfid@elatec.com).

This reader is shown in Figure 21 below.
The EnOcean NFC Configurator SW can be downloaded from the EnOcean support & tools page: https://www.enocean.com/support/download/

5.5.3 Including NFC Functionality into Existing Customer Tools

Reading and writing the NFC memory of the PTM module is done using the common NFC commands defined by the NFC Forum as described in chapter 5.1. This makes it easy for OEMs to include NFC configuration functionality into their own tools.

OEMs wanting to develop own NFC configuration tools or to include NFC configuration into their existing tools can accelerate their development by licensing the EnOcean SW libraries and the EnOcean reference implementation. Please contact EnOcean: support@enocean.com for more information or a commercial offer.
6 APPLICATIONS INFORMATION

6.1 Product Label

Listed below are examples of the product labels for each of the PTM 21x modules. Actual product label has specific product related information.

Each module can easily be identified by its name and the supported frequency (868.300 MHz 902.875 MHz, 928.350 MHz) on the label. Additionally, PTM 215 devices (which contain the NFC interface for configuration) can be identified by the NFC icon on the product label.

Due to the limited area of the product label, the UKCA logo will be placed at the packaging (carton box) only. This is according to UK guidelines: https://www.gov.uk/guidance/using-the-ukca-marking

"General rules:
The UKCA marking must be clearly visible and legible when you affix it to the product. If this is not possible, you must attach it to the packaging (if any) or accompanying documents."

![Figure 22 PTM 210 / PTM 215 (EU / 868 MHz) labels](image)

![Figure 23 PTM 215J (Japan / 928 MHz) label](image)
Figure 24 PTM 215U (US / 902 MHz) label
The product label contains the following items:

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
<th>Content / Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Product name</td>
<td>PTM 210, PTM 215, PTM 215J, PTM 215U</td>
</tr>
<tr>
<td>Revision and Step code</td>
<td>Product version</td>
<td>18 DC (Revision 18, Step Code DC)</td>
</tr>
<tr>
<td>Production date</td>
<td>Week and Year of production</td>
<td>10 / 21 (10th week of 2021)</td>
</tr>
<tr>
<td>NFC capability information</td>
<td>– showing the position of the antenna.</td>
<td></td>
</tr>
<tr>
<td>Certification marking of EnOcean Alliance with frequency specification.</td>
<td>Frequencies: 868.3 MHz, 902.875 MHz, 928.35 MHz</td>
<td></td>
</tr>
<tr>
<td>Company name and Unique EnOcean ID in hexadecimal 48 bit format.</td>
<td>Example ID: 0x0000 FE50 0100</td>
<td></td>
</tr>
<tr>
<td>Production tracking in QR Code</td>
<td>See Chapter 6.1.1.</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 Product label content
6.1.1 QR code structure

Each PTM 21x product label contains a machine-readable QR code which encodes a text string according to the EnOcean Alliance Labelling standard. Details about the labelling standard can be found here: https://www.enocean-alliance.org/productid/.

The same standard is also used to encode the information in the NFC NDEF string. An example for the content of the QR code might be for instance:

30S0000FE500100+13Z12345678123456781234567812345678+1P000B00000057+30PS3061-A215+2PDC18+S01234567890123

The text string above holds different information containers joined by “+”. The begin of each container is marked by an identifier e.g. “30S”. This example contains the following containers:

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Content / Value</th>
<th>Length of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>30S</td>
<td>EnOcean Radio ID 48 bit format 0000FE500100</td>
<td>15 characters (3 container + 12 data)</td>
</tr>
<tr>
<td>+</td>
<td>Field Separator</td>
<td>1 character</td>
</tr>
<tr>
<td>13Z</td>
<td>Random, device-specific security key (16 Bytes) Generated at manufacturing 12345678123456781234567812345678</td>
<td>35 characters (3 container + 32 data)</td>
</tr>
<tr>
<td>+</td>
<td>Field Separator</td>
<td>1 character</td>
</tr>
<tr>
<td>1P</td>
<td>EnOcean Alliance Product ID 000B000000057</td>
<td>14 characters (2 container + 12 data)</td>
</tr>
<tr>
<td>+</td>
<td>Field Separator</td>
<td>1 character</td>
</tr>
<tr>
<td>30P</td>
<td>Product Ordering Code S3061-A215</td>
<td>13 characters (3 container + 10 data)</td>
</tr>
<tr>
<td>+</td>
<td>Field Separator</td>
<td>1 character</td>
</tr>
<tr>
<td>2P</td>
<td>Step Code and Revision of the product DC18 (Step Code DC, Revision 18)</td>
<td>6 characters (2 container + 4 data)</td>
</tr>
<tr>
<td>+</td>
<td>Field Separator</td>
<td>1 character</td>
</tr>
<tr>
<td>S</td>
<td>Serial Number 01234567890123</td>
<td>15 characters (1 container + 14 data)</td>
</tr>
</tbody>
</table>

Table 7 QR code content example based on the above table

The length and content of the QR code can vary from the example for the case of different module revisions.
6.2 Construction of application specific Switch Rockers

EnOcean provides both 2D mechanical data and 3D construction data (in IGS format) of the mechanical interface of PTM 21x modules for the design of customer specific frames and rockers. This data is available here:

https://www.enocean.com/produkte/enocean_module/ptm-215/

Polycarbonate is recommended as rocker material since it is both buckling resistant and wear-proof. It is also recommended to apply Teflon varnish in the areas of actuation.

⚠️ It is recommended using non-conductive material for the rockers to ensure best transmission range. Avoid if possible metallic materials or plastics with conducting ingredients such as graphite.

⚠️ If the rocker is not mounted on the rotation axis of PTM 21x several tolerances have to be considered! The measure from support plane to top of the energy bow is 7.70 mm +/- 0.3 mm!

⚠️ The movement of the energy bow must not be limited by mounted rockers!

⚠️ Catwalks of the switch rocker must not exert continuous forces on contact nipples!

6.3 Device Mounting

For mounting the PTM device into an application specific case, the package outline drawings of the device are given in chapter 1.5. More detailed 3D construction data is available from EnOcean in IGS format as described in the previous chapter.

⚠️ It is recommended not to mount the device directly onto metal surfaces or into metal frames since this can lead to significant loss of transmission range.

PTM is powered by the electromagnetic generator ECO 200. For proper function magnets or ferromagnetic materials are not permitted within a keep-out zone of 60mm around the centre of the PTM.
6.4 Transmission Range

The main factors that influence the system transmission range are:

- Type and location of the antennas of receiver and transmitter.
- Type of terrain and degree of obstruction of the link path.
- Sources of interference affecting the receiver.
- "Dead spots" caused by signal reflections from nearby conductive objects.

Since the expected transmission range strongly depends on this system conditions, range tests should always be performed to determine the reliably achievable range under the given conditions.

The following figures for expected transmission range are considered by using a PTM, an STM or a TCM radio transmitter device together with a TCM radio receiver device with preinstalled whip antenna.

These figures should be treated as a rough guide only:

- Line-of-sight connections
 Typically 30 m range in corridors, up to 100 m in halls

- Plasterboard walls / dry wood
 Typically 30 m range, through max. 5 walls

- Ferro concrete walls / ceilings
 Typically 10 m range, through max. 1 ceiling

- Fire-safety walls, elevator shafts, staircases and similar areas should be considered as shielded

The angle at which the transmitted signal hits the wall is very important. The effective wall thickness – and with it the signal attenuation – varies according to this angle. Signals should be transmitted as directly as possible through the wall. Wall niches should be avoided.
Other factors restricting transmission range include:

- Switch mounting on metal surfaces (up to 30% loss of transmission range).
- Hollow lightweight walls filled with insulating wool on metal foil.
- False ceilings with panels of metal or carbon fibre.
- Lead glass or glass with metal coating, steel furniture.

The distance between EnOcean receivers and other transmitting devices such as computers, audio and video equipment that also emit high-frequency signals should be at least 0.5 m.

A more detailed application note on how to determine the transmission range within buildings is available from: https://www.enocean.com/support/application-notes/
7 MARKET APPROVALS

7.1 PTM 21x 868 MHz: Market Approval for the European Market

The push button transmitter module has been developed and tested according to the directives and standards for the EU market. An EU declaration of conformity (EU DoC) can be downloaded from the product website and specific test reports are available on request.

The push button transmitter module can be operated without notification and free of charge in the area of the European Union, and in Switzerland.

The final product including EnOcean switch module must meet all necessary application specific requirement for CE conformity (e.g., building automation application, compliance of frame rockers to RoHS and product safety, EU country specific WEEE registration, finished product labelling and documentation with CE).

If transmitters are used according to the regulations of the 868.300 MHz SRD/ISM band, a so-called “Duty Cycle” of 1% per hour for each transmitter must not be exceeded. It must be ensured that the push button transmitter module is not operated more than 6000 times within one hour (one operation: energy bow is pressed and released). Within this calculation, the extraordinary short telegram length is considered including three sub-telegrams. A tolerance of 5% in the telegram length is included.

7.2 PTM 21x 868 MHz: Market Approval for the UK

Till end of 2022 UK will accept EU (CE) market approval (see above). From 2023 UK will introduce its own market approval system, which is derived from the EU CE (EU directives will be UK statutory instruments, EU standards will be British standards). EnOcean will provide the UK declaration of conformity (UK DoC) document at the product website for download.

Due to the limited area of the product label, the UKCA logo will be placed at the packaging (carton box) only. This is according to UK guidelines: https://www.gov.uk/guidance/using-the-ukca-marking

"General rules:
The UKCA marking must be clearly visible and legible when you affix it to the product. If this is not possible, you must attach it to the packaging (if any) or accompanying documents."

The final product including EnOcean switch module must meet all necessary application specific requirement for UK conformity (e.g., building automation application, compliance of frame rockers to RoHS and product safety, UK WEEE registration, finished product labelling and documentation with UKCA).
7.3 PTM 215U: FCC and Industry Canada Regulatory Statements

7.3.1 FCC Grant Of Equipment Autorisation

TCB

GRANT OF EQUIPMENT AUTHORIZATION

Issued Under the Authority of the Federal Communications Commission

By:

Timco Engineering, Inc.
846 W. State Road 46
Newberry, FL 32065

Date of Grant: 02/05/2021

Application Dated: 02/05/2021

EnOcean GmbH
Kolpingring 15a
Oberhaching, 82041
Germany

Attention: Armin Anders, Director Product Marketing

NOT TRANSFERABLE

EQUIPMENT AUTHORIZATION is hereby issued to the named GRANTEE, and is VALID ONLY for the equipment identified hereon for use under the Commission's Rules and Regulations listed below.

FCC IDENTIFIER:

SZV-PTM215U

Equipment Class:

Part 15 Security/Remote Control Transmitter

Equipment Description:

Temperature and Humidity Sensor with transmitter

Grant Notes:

15.231

FCC Rule Parts:

15.231

Frequency Range (MHz):

902.075 – 902.075

Output Power:

500 mW

Frequency Tolerance:

±100 kHz

Emission Designator:
7.3.2 ISED Technical Acceptance Certificate

TIMCO ENGINEERING, INC.

845 NW State Road 45
Newberry, Florida 32669
www.timoengr.com
(352) 472-5500
C2@timocengr.com

Job No. ➔ 0566-21

TECHNICAL ACCEPTANCE CERTIFICATE

- **IC:** 5713A-PTM215U
- **Issued To:** EnOcean GmbH
 Koglerweg 18A
 82041
 Germany
- **Tested By:** VPI Laboratories, Inc.
 Company No: 2041B
 313 W 12800 S, STE 311
 Draper, UT 84020, USA
 801-360-4050, jssom@vpiotech.com
- **Type of Equipment:** Low Power Device (902–928 MHz)
- **Type of Service:** New Certification (Single)
- **Hardware Version Id Number (HVIN):** PTM 215U
- **Firmware Version Id Number (FVIN):** N/A
- **Product Marketing Name (PMN):** PTM 215U
- **Host Marketing (HMIN):** N/A

<table>
<thead>
<tr>
<th>FREQUENCY RANGE</th>
<th>EMISSION DESIGNATIONS</th>
<th>R.F. POWER</th>
<th>ANTENNAINFO</th>
<th>SPECIFICATION/ISSUE & DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>902.875 MHz</td>
<td>286K1ID</td>
<td>14.6 dBiW@3m Trace 0dBi</td>
<td>RSS-210</td>
<td>Issue 10; Dec 2019</td>
</tr>
</tbody>
</table>

Note: This equipment also complies with RSS-102 Issue 3 (March 2013) and RSS-Gen. Issue 5 (March 2019).

Certification of equipment means only that the equipment has met the requirements of the above-noted specification. License applicants, where applicable to use certified equipment, are noted on an accordingly by the ISED issuing office and will depend on the existing radio environment, service and location of operation. This certificate is issued on condition that the licensor complies and will continue to comply with the requirements and procedures issued by ISED. The equipment for which this certificate is issued shall not be manufactured, imported, distributed, leased, offered for sale or sold unless the equipment complies with the applicable technical specifications and procedures issued by ISED.

I hereby state that the above equipment was tested and found in compliance with the above-noted specifications.

ISSUED UNDER THE AUTHORITY OF MINISTER OF INDUSTRY

DATE: February 8, 2021

Signed: Bruno Clavier, General Manager

© 2022 EnOcean | www.enocean.com
March 2022 | Page 45/48
7.3.3 Considerations

This device complies with part 15 of the FCC rules and Industry Canada ICES-003. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Any changes or modifications not expressly approved by manufacturer could void the user's authority to operate the equipment.

When the product is placed on the US / Canadian market, it must carry the Specified Radio Equipment marking as shown below:

<table>
<thead>
<tr>
<th>FCC:</th>
<th>SZV-PTM215U</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC:</td>
<td>5713A-PTM215U</td>
</tr>
</tbody>
</table>

IMPORTANT! Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

IMPORTANT! Tous les changements ou modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actioner cet équipement.
7.4 PTM 215J: Japanese Type Approval

PTM 215J complies with the Japanese radio law and is certified according to ARIB STD-T108 V1.0 (2012-02). There is a certification marking on the back side of the module.

When the product is placed on the Japanese market, it must carry the Specified Radio Equipment marking as shown below:

If the certification label cannot be recognized from outside (e.g. installation in a host) appropriate information must be referenced in the user manual.

Transmitting the secure teach in telegram the PTM 215J transmits a telegram with 48-bit ID as required by Japanese radio law.
8 PRODUCT SAFETY INSTRUCTIONS

PTM modules are not end customer sold final products. Final products (e.g. switches) which include PTM Modules are to be prepared by partners. Please consider following recommendation for parts of the final product safety instructions:

Intended use:

- Switch products are intended for indoor usage in closed dry rooms, for details see user manual.
- The product must not be used in any relation with equipment that supports, directly or indirectly, human/animal health or life or with applications that can result in danger for people, animals or real value.
- The product is not suitable for use in mechanically or environmentally challenging environments including (but not limited to) environments with heavy vibrations, mechanical shocks, very high humidity, very dusty or in explosive atmosphere.
- The installation and assembly of electrical equipment may only be performed by a skilled electrician.

Basic safety instructions:

- Risk of suffocation! Do not leave the packaging material lying around. Children could swallow the small parts and choke on them.
- Install and operate product according to user manual and do not modify the product.
- The product should not be exposed to rapid temperature changes shortly before or during operation; condensation of moisture has to be avoided.
- Wrong cleaning may damage the product; we suggest cleaning with soft and damp tissue.
- Do not disassemble!